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Abstract
We present the most concise set of axioms for Tsallis entropy, and rigorously
prove the uniqueness theorem. This set of axioms consists of only two
distinct additivities: pseudoadditivity and Shannon additivity. We then
compare our axioms with the axioms presented by Santos. The peculiarity
of pseudoadditivity as an axiom for Tsallis entropy is also discussed.
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Mathematics Subject Classification: 94A17, 54C70

1. Introduction

The introduction of Tsallis entropy, a one-parameter generalization of Shannon entropy, has
led to a successful generalization of Boltzmann–Gibbs statistical mechanics especially for the
analysis of long-range correlations in space or time, multifractal systems and physical systems
emerging from scale-invariant structure [1]. In these studies, the theoretical results derived
from the generalization provide us with some consistent interpretations for the actual nonlinear
behaviours such as chaotic dynamics [1, 2]. For a probability distribution (p1, . . . , pn)(∑n

i=1 pi = 1, pi � 0, i = 1, . . . , n
)

and q ∈ R+, Tsallis entropy is defined by

Sq(p1, . . . , pn) ≡ k
1 − ∑n

i=1 p
q

i

q − 1
(1.1)

where k is a positive constant. Tsallis entropy recovers Shannon entropy when q approaches 1:

Sq = k
1 − ∑n

i=1 p
q

i

q − 1
q→1−→ S1 = −k

n∑
i=1

pi ln pi. (1.2)

Shannon entropy and Tsallis entropy are bases of traditional Boltzmann–Gibbs statistical
mechanics [3] and its generalization [1, 4, 5], respectively. Therefore, the above
correspondence (1.2) between the two cases q ∈ R+ and q = 1 is very important in the sense
that generalized Boltzmann–Gibbs statistical mechanics based on Tsallis entropy recovers the
Boltzmann–Gibbs statistical mechanics based on Shannon entropy.
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For example, the equilibrium state in generalized Boltzmann–Gibbs statistical mechanics
recovers the well-known equilibrium state when q → 1. The generalized equilibrium
state

{
p

(q)

i

}
can be obtained by maximizing Tsallis entropy (1.1) with the energy constraint

〈〈εi〉〉q = Uq as follows (see [6]):

p
(q)

i = expq [−β(εi − Uq)]

Zq

i = 1, . . . , n (1.3)

where 〈〈·〉〉q is the normalized q-expectation defined by

〈〈X〉〉q ≡
∑n

i=1 p
q

i xi∑n
j=1 p

q

j

. (1.4)

expq and Zq are the q-exponential function and the generalized partition function, respectively
given by

expq[x] ≡ [1 + (1 − q)x]
1

1−q (1.5)

Zq ≡
n∑

i=1

expq [−β(εi − Uq)] (1.6)

and β is the Lagrange parameter. The q-exponential function expq recovers the exponential
function when q goes to 1:

expq[x] = [1 + (1 − q)x]
1

1−q
q→1−→ exp[x] (1.7)

so that all of the above mathematical formulae (1.3)–(1.6) in the foundations of generalized
statistical mechanics recover the well-known formulae in traditional Boltzmann–Gibbs
statistical mechanics. The correspondence between q ∈ R+ and q = 1 is found everywhere
in the formulae of generalized statistical mechanics. These generalized formulae using
appropriate q ∈ R+ for each application enable us to present nice consistent interpretations
for each observed dynamics [1, 2].

All of these formulae are derived from the definition of the entropies. Thus, according to
the above correspondence (1.2), two sets of axioms for the two entropies, Tsallis entropy and
Shannon entropy, should have the following correspondence:

a set of axioms
for Tsallis entropy Sq

q→1−→
a set of axioms
for Shannon
entropy S1




[SK1] continuity
[SK2] maximality
[SK3] additivity
[SK4] expandability.

(1.8)

Along the lines of this correspondence, Santos presents a set of axioms for Tsallis
entropy [7]. Among his four axioms, two additivities, pseudoadditivity [1] and Shannon
additivity [5], are included, and expandability is missing. Shannon additivity corresponds
to the additivity [SK3] in (1.8), and pseudoadditivity is a characteristic property of Tsallis
entropy [4]. These two additivities appear to be similar in the sense that both are given
by the formulations of the entropy Sq(AB) for the composite systems A and B, but they
are actually different. When two systems, A and B, are mutually independent, in extensive
systems (q = 1), pseudoadditivity coincides with Shannon additivity, but in nonextensive
systems (q ∈ R+), this coincidence generally does not hold.

In this paper, we show that pseudoadditivity and Shannon additivity can constitute the
most concise set of axioms for Tsallis entropy. In other words, we rigorously prove that
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Tsallis entropy is uniquely determined by these two distinct additivities only. This result is
in agreement with the requirement that a set of axioms for a function should be as concise
as possible. Based on our result, we compare our axioms with Santos’ axioms [7] for Tsallis
entropy. Taking into account our axioms and the uniqueness theorem, the four axioms in [7]
are obviously redundant for unique determination of Tsallis entropy. We explain in detail
the factor leading to the redundancy in his axioms by comparing Santos’ axioms with the
Shannon–Khinchin axioms [SK1]–[SK4]. As a result, our axioms are the most concise of all
conceivable axioms, but they are not a generalization of the Shannon–Khinchin axioms along
the lines of the correspondence (1.8) because of the use of pseudoadditivity as an axiom. In
other words, it is found that Shannon additivity rather than pseudoadditivity should be used as
an axiom for the generalization of the Shannon–Khinchin axioms.

2. The most concise set of axioms and the uniqueness theorem for Tsallis entropy

Let �n be defined by the n-dimensional simplex:

�n ≡
{

(p1, . . . , pn)

∣∣∣∣∣pi � 0,

n∑
i=1

pi = 1

}
. (2.1)

Our present set of axioms for Tsallis entropy consists of only two out of the four axioms in
[7], as follows.

Let Sq(p1, . . . , pn) be a function defined for any integer n ∈ N , for any positive real
number q ∈ R+ and for all probability distributions (p1, . . . , pn) ∈ �n. It is assumed that
there exist (p1, . . . , pn) ∈ �n and q ∈ R+ such that Sq(p1, . . . , pn) does not take zero. If
for any n ∈ N and q ∈ R+ this function satisfies the following properties [I] and [II], then
Sq(p1, . . . , pn) is uniquely determined to be (1.1):

[I] (pseudoadditivity):

Sq(AB)

k
= Sq(A)

k
+

Sq(B)

k
+ (1 − q)

Sq(A)

k

Sq(B)

k
(2.2)

where A and B are mutually independent finite systems:

A =
(

A1 · · · An

pA
1 · · · pA

n

)
B =

(
B1 · · · Bm

pB
1 · · · pB

m

)
(2.3)

AB =
(

A1B1 A1B2 · · · AnBm

pAB
11 pAB

12 · · · pAB
nm

)
=

(
A1B1 A1B2 · · · AnBm

pA
1 pB

1 pA
1 pB

2 · · · pA
n pB

m

)
. (2.4)

[II] (Shannon additivity):

Sq

(
p11, . . . , pnmn

) = Sq(p1, . . . , pn) +
n∑

i=1

p
q

i Sq

(
pi1

pi

, . . . ,
pimi

pi

)
(2.5)

where two probability distributions {pi : i = 1, . . . , n} and {pij : i = 1, . . . , n, j =
1, . . . ,mi} satisfy

pij � 0 pi =
mi∑

j=1

pij

n∑
i=1

pi = 1 (2.6)

for any i = 1, . . . , n and j = 1, . . . ,mi .
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Note that (2.5) is a generalization of the Shannon additivity in [5], which is given by

Sq(p1, . . . , pW ) = Sq(pL, pM) + p
q

LSq

(
p1

pL

, . . . ,
pWL

pL

)
+ p

q

MSq

(
pWL+1

pM

, . . . ,
pW

pM

)
(2.7)

where WL + WM = W,pL = ∑WL

i=1 pi and pM = ∑W
i=WL+1 pi . Comparing (2.5) with (2.7),

(2.7) is clearly the special case of n = 2 in (2.5). Moreover, in the axioms presented in
[7], (2.7) is given as one of the four axioms, but actually (2.5) is applied in the proof of the
uniqueness theorem (see formula (22) in [7]). Throughout this paper, we shall use formula
(2.5) as Shannon additivity.

The uniqueness theorem for our axioms can be easily proved as follows.
Consider the condition that two systems A and B are mutually independent as in the

precondition (2.4) for pseudoadditivity, that is,

for any i = 1, . . . , n and any j = 1, . . . ,m pAB
ij = pA

i pB
j . (2.8)

Here, we take mi = m for all i = 1, . . . , n. Under condition (2.8), Shannon additivity (2.5)
can be simplified to

Sq

(
pA

1 pB
1 , . . . , pA

n pB
m

) = Sq

(
pA

1 , . . . , pA
n

)
+

(
n∑

i=1

(
pA

i

)q

)
Sq

(
pB

1 , . . . , pB
m

)
. (2.9)

In accordance with the notation (2.3) and (2.4) for pseudoadditivity (2.2), we introduce
the following notation:

for any i = 1, . . . , n pi = pA
i . (2.10)

Thus the obtained Shannon additivity (2.9) can be written as

Sq(AB) = Sq(A) +

(
n∑

i=1

p
q

i

)
Sq(B). (2.11)

Eliminating Sq(AB) from both (2.2) and (2.11) yields

Sq(A) + Sq(B) +
1 − q

k
Sq(A)Sq(B) = Sq(A) +

(
n∑

i=1

p
q

i

)
Sq(B). (2.12)

This equality (2.12) holds for any (p1, . . . , pn) ∈ �n and q ∈ R+. As the existence of nonzero
Sq is assumed, Tsallis entropy (1.1) is directly obtained from (2.12) as follows:

Sq(A) = Sq(p1, . . . , pn) = k
1 − ∑n

i=1 p
q

i

q − 1
. (2.13)

Thus the proof is complete.
Note that Renyi entropy SR

q (p1, . . . , pn) has the following simple relation [4, 5] with
Tsallis entropy Sq(p1, . . . , pn):

SR
q (p1, . . . , pn) = ln[1 + (1 − q)Sq(p1, . . . , pn)/k]

1 − q
. (2.14)

The axioms of Renyi entropy SR
q are given in [8].

3. Comparison of our axioms with Santos’ axioms

3.1. Redundancy in Santos’ axioms

In [7], Santos shows a set of axioms for Tsallis entropy as follows.
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[S1] Sq(p1, . . . , pn) must be a continuous function of the probabilities pi (pi ∈ (0, 1) ∀i).
[S2] Sq(p1, . . . , pn) must be a monotonic increasing function of the number of states n, in

the case of equiprobability.
[S3] Sq(p1, . . . , pn) must satisfy the pseudoadditivity relation:

Sq(AB)

k
= Sq(A)

k
+

Sq(B)

k
+ (1 − q)

Sq(A)

k

Sq(B)

k
(3.1)

where A and B are mutually independent systems and k is a positive constant.
[S4] Sq must satisfy the relation:

Sq(p1, . . . , pn) = Sq(pL, pM) + p
q

LSq

(
p1

pL

, . . . ,
pnL

pL

)
+ p

q

MSq

(
pnL+1

pM

, . . . ,
pn

pM

)
(3.2)

where nL + nM = n, pL + pM = 1 and pL = ∑nL

i=1 pi and pM = ∑n
i=nL+1 pi .

Under the above four axioms, Santos states that the unique function satisfying all these
properties [S1]–[S4] is Tsallis entropy (1.1). As mentioned before, despite presenting axiom
[S4], Santos applies the generalized formula (2.5) in his proof.

Comparing Santos’ axioms [S1]–[S4] with ours [I]–[II], [I] and [II] coincide with [S3]
and [S4], respectively. Thus Santos’ axioms are clearly redundant for unique determination
of Tsallis entropy.

3.2. The peculiarity of pseudoadditivity as an axiom

The Shannon–Khinchin axioms are well established as axioms for Shannon entropy in Shannon
information theory [9]. Therefore, in order to construct axioms for Tsallis entropy according
to the correspondence (1.8), they must be the least generalization of the Shannon–Khinchin
axioms. Comparing Santos’ axioms with the Shannon–Khinchin axioms, the peculiarity of
pseudoadditivity as an axiom can be revealed as follows.

Firstly, we briefly review the Shannon–Khinchin axioms. The Shannon–Khinchin axioms
[9] are given by the following four conditions:

[SK1] continuity. For any n ∈ N the function S1(p) is continuous with respect to p ∈ �n.
[SK2] maximality. For given n ∈ N and for (p1, . . . , pn) ∈ �n, the function S1(p1, . . . , pn)

takes its largest value for pi = 1
n

(i = 1, . . . , n).
[SK3] additivity. If

pij � 0 pi =
mi∑

j=1

pij for any i = 1, . . . , n and j = 1, . . . ,mi

and
n∑

i=1

pi = 1 (3.3)

then the following equality holds:

S1
(
p11, . . . , pnmn

) = S1(p1, . . . , pn) +
n∑

i=1

piS1

(
pi1

pi

, . . . ,
pimi

pi

)
. (3.4)

[SK4] expandability.

S1(p1, . . . , pn, 0) = S1(p1, . . . , pn). (3.5)
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Comparing Santos’ axioms [S1]–[S4] with the above Shannon–Khinchin axioms [SK1]–
[SK4], [S1], [S2] and [S4] correspond to [SK1], [SK2] and [SK3], respectively. However,
pseudoadditivity given in [S3] does not correspond to any axiom in the Shannon–Khinchin
axioms. Moreover, an axiom corresponding to expandability given in [SK4] is missing
in Santos’ axioms. In other words, when we consider Santos’ axioms as a generalization
of the Shannon–Khinchin axioms, the expandability given in [SK4] is replaced by the
pseudoadditivity given in [S3] in Santos’ axioms.

In nonextensive systems, there exist two additivities: pseudoadditivity (2.2) and Shannon
additivity (2.5). When q → 1, it can be easily verified that pseudoadditivity and Shannon
additivity coincide with each other. However, when q �= 1 (nonextensive systems), they are
completely different from each other in the sense that one cannot be derived from the other.
Even if the associated systems A and B are mutually independent, each of (2.2) and (2.11)
cannot be derived from the other. Therefore, we can obtain Tsallis entropy (1.1) uniquely
from these two distinct additivities in the previous section. But the set of axioms [I] and [II]
is not clearly a generalization of the Shannon–Khinchin axioms.

Then, for a natural generalization of the Shannon–Khinchin axioms to nonextensive
systems, we need to consider which additivity is suitable to be one of the axioms of
Tsallis entropy. In the Shannon–Khinchin axioms, Shannon additivity (3.4) is given as
additivity. Thus, we need to consider two kinds of comparison: ‘(3.4) versus (2.5)’, and ‘(3.4)
versus (2.2)’.

For the former comparison: (3.4) versus (2.5), the expectation ‘
∑n

i=1 pi×’ on the right-
hand side of (3.4) is generalized to ‘

∑n
i=1 p

q

i ×’ on the right-hand side of (2.5).

extensive (q = 1) :
n∑

i=1

pi× generalized−→ nonextensive (q ∈ R+) :
n∑

i=1

p
q

i × (3.6)

On the other hand, for the latter comparison: (3.4) versus (2.2), consider the same
condition such that the two systems A and B are mutually independent. Under such a
condition in extensive systems (q = 1), (3.4) implies that

S1(AB) = S1(A) + S1(B). (3.7)

Equation (3.7) can be obtained by substituting q = 1 into (2.11) as seen in the previous section.
Compare (3.7) in extensive systems with (2.2) in nonextensive systems. For simplicity, we
consider the case k = 1. The sum of two entropies S1(A) + S1(B) on the right-hand side of
(3.7) is generalized to Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B) on the right-hand side of (2.2):

extensive (q = 1) : S1(A) + S1(B)

generalized−→ nonextensive (q ∈ R+) : Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B) (3.8)

Compare the two generalizations (3.6) and (3.8). Clearly (3.6) is a more natural
generalization than (3.8).

Moreover, when we construct a set of axioms for a function in general, we cannot
use any knowledge of the concrete form of the function. If we set a special form such as
‘+(1 − q)Sq(A)Sq(B)’ in (3.8) as one of the axioms for Tsallis entropy, we need a clear and
meaningful reason why such an axiom can be given without any knowledge of the concrete
form of Tsallis entropy. In fact, we cannot find any reason why 1−q2 is not suitable instead of
1−q in (3.8) without any knowledge of the concrete form (1.1). There are many other functions
ϕ(q) of q such that limq→1 ϕ(q) = 0. Therefore, the requirement of pseudoadditivity (2.2) as
an axiom is not suitable and unnatural for an axiom of Tsallis entropy for natural generalization
of the Shannon–Khinchin axioms.
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We remark that in [10], Abe uses a generalized form of pseudoadditivity (2.2) such as

Sq(AB) = Sq(A) + Sq(B|A) + (1 − q)Sq(A)Sq(B|A) (3.9)

as one of the axioms. The requirement (3.9) is also inappropriate for an axiom of Tsallis
entropy for the same reasons as stated above. The right-hand side of (3.9) is rather more
complicated than that of (2.2).

4. Conclusion

We have presented the most concise set of axioms for Tsallis entropy. Our axioms consist of
only two additivities: pseudoadditivity and Shannon additivity. We have rigorously proved
that Tsallis entropy is uniquely determined by only these two additivities. Moreover, we have
compared our axioms with Santos’ axioms [7]. Our axioms consist of two out of Santos’ four
axioms. Thus Santos’ axioms are redundant for unique determination of Tsallis entropy. So,
our axioms in this paper are found to be the most concise set of axioms for Tsallis entropy.
This is in agreement with the general requirement that a set of axioms for a function should
be as concise as possible.

However, our axioms are not a natural generalization of the Shannon–Khinchin axioms
[9] in extensive systems from the point of view of (1.8). This is due to the inappropriate
choice of additivity for an axiom of Tsallis entropy. We then compared Santos’ axioms
with the Shannon–Khinchin axioms carefully and discussed in detail which additivity of
pseudoadditivity and Shannon additivity is suitable for an axiom of Tsallis entropy. As a
result, we have revealed that pseudoadditivity is unnatural and inappropriate for an axiom of
Tsallis entropy in view of the correspondence (1.8). This is because there is no clear way of
deriving it without any knowledge of the concrete form of Tsallis entropy. Therefore, Shannon
additivity (2.5) and not pseudoadditivity (2.2) should be used as an axiom from the point of
view of (1.8).

Generalization of the Shannon–Khinchin axioms to nonextensive systems is given by the
author in [11]. The result in [11] coincides with another definition of Tsallis entropy by means
of information content [12]. In the axioms in [11], only Shannon additivity is applied as
additivity, which differs from the axioms presented above.

In summary, if pseudoadditivity (2.2) is accepted as an axiom of Tsallis entropy, the most
concise set of axioms for Tsallis entropy can be constructed as shown in section 2. This result
is in agreement with the general requirement that a set of axioms for a function should be
as concise as possible. But these axioms are not a generalization of the Shannon–Khinchin
axioms. In contrast, if pseudoadditivity (2.2) is not accepted as an axiom of Tsallis entropy, a
natural generalization of the Shannon–Khinchin axioms can be constructed [11], but it is not
as concise as the axioms shown in section 2.
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